Bestgamingpro

Product reviews, deals and the latest tech news

Neutrinos from our Sun hold the secrets to nuclear fusion

Most people realize our Sun is producing light and heat from the fusion of hydrogen into helium. However, the process of merging together hydrogen nuclei into helium is not as straightforward as it might seem.

Typically, there are two processes by which smaller stars create fusion. The first of these, the proton-proton (pp) reaction is the simpler, as well as the more common, of the two. The second, the Carbon-Nitrogen-Oxygen (CNO) cycle, is thought to be the predominant means of producing energy in hotter, more massive stars.

However, a new study finds neutrinos from the Sun providing the first direct evidence of the CNO cycle taking place deep within our parent star.

“Although on the basis of model calculations we expected the CNO cycle also to occur in the Sun, direct evidence of this has never been obtained before. Only a characteristic neutrino signal can provide conclusive proof that this actually happens — now we have that conclusive proof without a shadow of a doubt,” Michael Wurm, a neutrino physicist at Johannes Gutenberg University Mainz (JGU) and member of the Borexino Collaboration, describes.

[Read: How to build a search engine for criminal data]

For every reaction, there’s a harder-to-remember reaction

The PP fusion reaction in stars